63 research outputs found

    Stability of Localized Wave Fronts in Bistable Systems

    Get PDF
    Localized wave fronts are a fundamental feature of biological systems from cell biology to ecology. Here, we study a broad class of bistable models subject to self-activation, degradation, and spatially inhomogeneous activating agents. We determine the conditions under which wave-front localization is possible and analyze the stability thereof with respect to extrinsic perturbations and internal noise. It is found that stability is enhanced upon regulating a positional signal and, surprisingly, also for a low degree of binding cooperativity. We further show a contrasting impact of self-activation to the stability of these two sources of destabilization. DOI: 10.1103/PhysRevLett.110.03810

    Defensive alliances in spatial models of cyclical population interactions

    Full text link
    As a generalization of the 3-strategy Rock-Scissors-Paper game dynamics in space, cyclical interaction models of six mutating species are studied on a square lattice, in which each species is supposed to have two dominant, two subordinated and a neutral interacting partner. Depending on their interaction topologies, these systems can be classified into four (isomorphic) groups exhibiting significantly different behaviors as a function of mutation rate. On three out of four cases three (or four) species form defensive alliances which maintain themselves in a self-organizing polydomain structure via cyclic invasions. Varying the mutation rate this mechanism results in an ordering phenomenon analogous to that of magnetic Ising model.Comment: 4 pages, 3 figure

    Preservation of information in a prebiotic package model

    Full text link
    The coexistence between different informational molecules has been the preferred mode to circumvent the limitation posed by imperfect replication on the amount of information stored by each of these molecules. Here we reexamine a classic package model in which distinct information carriers or templates are forced to coexist within vesicles, which in turn can proliferate freely through binary division. The combined dynamics of vesicles and templates is described by a multitype branching process which allows us to write equations for the average number of the different types of vesicles as well as for their extinction probabilities. The threshold phenomenon associated to the extinction of the vesicle population is studied quantitatively using finite-size scaling techniques. We conclude that the resultant coexistence is too frail in the presence of parasites and so confinement of templates in vesicles without an explicit mechanism of cooperation does not resolve the information crisis of prebiotic evolution.Comment: 9 pages, 8 figures, accepted version, to be published in PR

    The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?

    Get PDF
    For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth

    Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games

    Get PDF
    Biodiversity is essential to the viability of ecological systems. Species diversity in ecosystems is promoted by cyclic, non-hierarchical interactions among competing populations. Such non-transitive relations lead to an evolution with central features represented by the `rock-paper-scissors' game, where rock crushes scissors, scissors cut paper, and paper wraps rock. In combination with spatial dispersal of static populations, this type of competition results in the stable coexistence of all species and the long-term maintenance of biodiversity. However, population mobility is a central feature of real ecosystems: animals migrate, bacteria run and tumble. Here, we observe a critical influence of mobility on species diversity. When mobility exceeds a certain value, biodiversity is jeopardized and lost. In contrast, below this critical threshold all subpopulations coexist and an entanglement of travelling spiral waves forms in the course of temporal evolution. We establish that this phenomenon is robust, it does not depend on the details of cyclic competition or spatial environment. These findings have important implications for maintenance and evolution of ecological systems and are relevant for the formation and propagation of patterns in excitable media, such as chemical kinetics or epidemic outbreaks.Comment: Final submitted version; the printed version can be found at http://dx.doi.org/10.1038/nature06095 Supplementary movies are available at http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie1.AVI and http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie2.AV

    Clusters of ant colonies and robust criticality in a tropical agroecosystem

    Full text link
    Although sometimes difficult to measure at large scales, spatial pattern is important in natural biological spaces as a determinant of key ecological properties such as species diversity, stability, resiliency and others(1-6). Here we demonstrate, at a large spatial scale, that a common species of tropical arboreal ant forms clusters of nests through a combination of local satellite colony formation and density- dependent control by natural enemies, mainly a parasitic fly. Cluster sizes fall off as a power law consistent with a so-called robust critical state(7). This endogenous cluster formation at a critical state is a unique example of an insect population forming a non- random pattern at a large spatial scale. Furthermore, because the species is a keystone of a larger network that contributes to the ecosystem function of pest control, this is an example of how spatial dynamics at a large scale can affect ecosystem service at a local level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62598/1/nature06477.pd

    Analysis of a recovery process: Dwingelose Heide revisited

    Get PDF
    The recovery process of a Dutch heathland after fire is investigated. The study area, 12 m x 20 m, has been surveyed yearly between 1963 and 1993. Previous work has shown that a stationary Markov chain models the observed recovery process well. However, the Markov model fails to capture an important observation, the existence of a phase structure. The process begins deterministically, but small random (non-Markov) effects accumulate through time and at some point the process suddenly becomes noisy. Here we make use of the spatial information contained in vegetation maps to examine dynamics at a fine spatial scale. We find that the phases observed at a large spatial scale separate themselves out distinctly at finer spatial scales. This spatial information allows us to investigate hypotheses about the mechanisms governing deterministic versus noisy vegetation dynamics

    Learning valued relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are in many real-world applications often expressed in a graded manner. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and valued relations are considered, and it unifies existing approaches because different types of valued relations can be modeled, including symmetric and reciprocal relations. This framework establishes in this way important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated on a case study in document retrieval

    Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator

    Get PDF
    Establishing how life can emerge from inanimate matter is among the grand challenges of contemporary science. Chemical systems that capture life’s essential characteristics—replication, metabolism and compartmentalization—offer a route to understanding this momentous process. The synthesis of life, whether based on canonical biomolecules or fully synthetic molecules, requires the functional integration of these three characteristics. Here we show how a system of fully synthetic self-replicating molecules, on recruiting a cofactor, acquires the ability to transform thiols in its environment into disulfide precursors from which the molecules can replicate. The binding of replicator and cofactor enhances the activity of the latter in oxidizing thiols into disulfides through photoredox catalysis and thereby accelerates replication by increasing the availability of the disulfide precursors. This positive feedback marks the emergence of light-driven protometabolism in a system that bears no resemblance to canonical biochemistry and constitutes a major step towards the highly challenging aim of creating a new and completely synthetic form of life. [Figure not available: see fulltext.]

    Microbial Communication, Cooperation and Cheating: Quorum Sensing Drives the Evolution of Cooperation in Bacteria

    Get PDF
    An increasing body of empirical evidence suggests that cooperation among clone-mates is common in bacteria. Bacterial cooperation may take the form of the excretion of “public goods”: exoproducts such as virulence factors, exoenzymes or components of the matrix in biofilms, to yield significant benefit for individuals joining in the common effort of producing them. Supposedly in order to spare unnecessary costs when the population is too sparse to supply the sufficient exoproduct level, many bacteria have evolved a simple chemical communication system called quorum sensing (QS), to “measure” the population density of clone-mates in their close neighborhood. Cooperation genes are expressed only above a threshold rate of QS signal molecule re-capture, i.e., above the local quorum of cooperators. The cooperative population is exposed to exploitation by cheaters, i.e., mutants who contribute less or nil to the effort but fully enjoy the benefits of cooperation. The communication system is also vulnerable to a different type of cheaters (“Liars”) who may produce the QS signal but not the exoproduct, thus ruining the reliability of the signal. Since there is no reason to assume that such cheaters cannot evolve and invade the populations of honestly signaling cooperators, the empirical fact of the existence of both bacterial cooperation and the associated QS communication system seems puzzling. Using a stochastic cellular automaton approach and allowing mutations in an initially non-cooperating, non-communicating strain we show that both cooperation and the associated communication system can evolve, spread and remain persistent. The QS genes help cooperative behavior to invade the population, and vice versa; cooperation and communication might have evolved synergistically in bacteria. Moreover, in good agreement with the empirical data recently available, this synergism opens up a remarkably rich repertoire of social interactions in which cheating and exploitation are commonplace
    corecore